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Abstract

A new approach for the construction of implicit subgrid-scale models for large-eddy simulation based on adaptive

local deconvolution is proposed. An approximation of the unfiltered solution is obtained from a quasi-linear combi-

nation of local interpolation polynomials. The physical flux function is modeled by a suitable numerical flux function.

The effective subgrid-scale model can be determined by a modified-differential equation analysis. Discretization pa-

rameters which determine the behavior of the implicit model in regions of developed turbulence can be adjusted so that

a given explicit subgrid-scale model is recovered to leading order in filter width. Alternatively, improved discretization

parameters can be found directly by evolutionary optimization. Computational results for stochastically forced and

decaying Burgers turbulence are provided. An assessment of the computational experiments shows that results for a

given explicit subgrid-scale model can be matched by computations with an implicit representation. A considerable

improvement can be achieved if instead of the parameters matching an explicit model discretization parameters de-

termined by evolutionary optimization are used.
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1. Introduction

The original intention of subgrid-scale modeling was to stabilize under-resolved flow simulations while

preserving reasonable accuracy on the resolved scales. By this motivation [1] the most widely used subgrid-

scale (SGS) model, the Smagorinsky model, was introduced [2]. While large-scale computations became

gradually easier, computational investigations of SGS models intensified, and limitations of the Smago-

rinsky model were revealed. Improved versions of the Smagorinsky model were constructed by introducing

the concept of a dynamic constant and by combining the Smagorinsky model with other models. A
comprehensive account of these activities can be found in the recent book of Sagaut [3].
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Theoretical SGS-model development is mainly based on the filtering approach [4] to large-eddy simu-

lation (LES) where filtering of the underlying conservation law and the subsequent discretization of the

filtered conservation law are separated. We call explicit SGS models such models which provide explicit
approximations or estimations of the unclosed SGS terms obtained after filtering. Explicit SGS models

require the explicit computation of SGS-stress approximations during time advancement. In particular for

compressible flows the computational overhead can be significant. Recent developments of explicit SGS

models include attempts to reconstruct directly a part of the unfiltered field such as the estimation model [5]

and the approximate deconvolution model [6]. A review of these approaches is given in [7]. A common

feature of these models is that they employ an explicit filter operation whose effective filter cut-off wave-

number nC can be adjusted 06 nC 6 nh [8]. With nh we indicate the largest wavenumber which can be

represented on the underlying grid with grid spacing h, the Nyquist wavenumber. An analysis of the in-
terference between numerical discretization and subgrid-scale model revealed a clear dependence of nC on

the order of accuracy and the resolution properties of the chosen discretization scheme [9].

First theoretical analyses of the mutual interference of SGS model and truncation error of the numerical

discretization lead to the conclusion that for SGS-model terms to dominate over the truncation error for

standard finite-difference schemes at least fourth-order accuracy is required [10]. These theoretical results

were corroborated by numerical simulations [11]. The alternative to higher-order schemes is to increase the

distance between nC and nh [9], which can lead, however, easily to one order-of-magnitude increase of

computational cost. For LES of flows in complex geometries the use of higher-order schemes leads to
implementational complications and computational overhead which one tries to avoid whenever possible.

The interference of SGS model and truncation error can also be beneficial, however. First indications that

the truncation error of a linear upwind scheme in some cases may function as implicit SGS model, i.e. a SGS

model whose terms are not explicitly modeled or computed, were reported byKawamura andKuwahara [12].

More generally, the use of nonlinearly stable schemes for implicit LES, i.e. LES with implicit SGSmodel, was

proposed by Boris et al. [13]. Originating from the use of monotone schemes this approach has been dubbed

MILES for Monotonically integrated LES, although in practice schemes satisfying less restrictive stability

constraints are used. For the latter reason the term implicit LES (ILES) appears to be more appropriate.
Noteworthy are in particular the application of the piecewise parabolic method to turbulence by Porter et al.

[14] and the so-called multidimensional positive definite advection transport algorithm (MPDATA) method

of Smolarkiewicz and Margolin [15,16]. Most intensely the flux-corrected transport (FCT) method was used

in the recent past for which considerable success in predicting wall-bounded turbulence was reported by

Fureby and Grinstein [17] (see also references therein). On the other hand, the application of off-the-shelf

non-oscillatory schemes to isotropic turbulence is less than straightforward, as reported byGarnier et al. [18].

This uncertainty has stimulated a deeper analysis of non-oscillatory discretizations. The most suitable vehicle

for analyzing a numerical scheme with respect to its implicit SGS modeling capabilities appears to the be
modified-differential equation analysis (MDEA), e.g. [19]. The FCT scheme was analyzed with this method

by Fureby et al. [20], the MPDATA method by Margolin and Rider [21].

Following an earlier suggestion [22] the objective of this paper is to design a nonlinear discretization

based on standard approaches in such a way that the truncation error provides a suitable implicit SGS

model. Computations with the constructed implicit SGS model should produce results at least as good as

common explicit models. The benefit lies mainly in the implicit character of the model which removes the

computational and a significant part of the implementational complications of explicit SGS models. As

mentioned before, for the construction of explicit SGS models filtering of the underlying conservation law
and the subsequent discretization are considered separately. For the construction of implicit SGS models,

however, we follow the concept of Schumann [23] and consider discretization and filtering simultaneously.

An appropriate framework for connecting filtering and discretization of the underlying conservation law

is available by the finite-volume method [19]. We consider now for simplicity the initial-value problem for a

generic scalar nonlinear transport equation for the variable v



414 N.A. Adams et al. / Journal of Computational Physics 200 (2004) 412–431
ov
ot

þ oF ðvÞ
ox

¼ 0: ð1Þ

On a mesh xj ¼ jh with equidistant spacing h and j ¼ . . . ;�1; 0; 1; . . . the grid function vN ¼ fvjg represents
a discrete approximation of vðxÞ by vj¼

: vðxjÞ. A spectrally accurate interpolant of the grid function with the

same Fourier transform can be constructed using the Whittaker cardinal function [24]. For finite h the

representation of the continuous solution vðxÞ by the grid function vN results in a subgrid-scale error

GSGS ¼
oFNðvNÞ

ox
� oFNðvÞ

ox
ð2Þ

which arises from the nonlinearity of F ðvÞ. The modified-differential equation for vN is

ovN
ot

þ oFNðvNÞ
ox

¼ GSGS: ð3Þ

A finite-volume discretization of Eq. (1) corresponds to a convolution with the top-hat filter

Gðx� xj; hÞ ¼
1=h; jx� xjj6 h=2;
0; else

�
ð4Þ

on the grid xN ¼ fxjg. An application of the filter operation (4) to a function uðxÞ returns the filtered so-
lution in terms of a grid function uj at xj

�uj ¼ G � u ¼ 1

h

Z xjþ1=2

xj�1=2

uðx0Þ dx0:

The resulting finite-volume approximation of Eq. (1) is given by

o�uN
ot

þ G � o
~FNð~uNÞ
ox

¼ 0; ð5Þ

where ~uN¼: uN results from an approximate inversion of the filtering �uN ¼ G � u.
Although the inverse-filtering operation is ill-posed, an approximation ~uN of u on the grid xN can be

obtained by regularized deconvolution [7]. For a brief summary on the deconvolution concept for subgrid-

scale modeling it is illustrative to consider the Fourier-transform ĜðnÞ of G. The filtering operation (4)

damps each wavenumber and truncates at the Nyquist wavenumber nh (constant grid spacing assumed). If
an inverse operator would exist it could be written in Fourier space simply as Ĝ�1ðnÞ. Since ĜðnÞ ¼ 0 for

jnjP nh only wavenumber contributions jnj < nh to the filtered solution can be inverted. This is the regu-

larized deconvolution obtained by singular-value decomposition. For turbulent flows it turned out that this

type of regularization is inferior to the van Cittert approach (see [6]) where a linear approximate decon-

volution operator is defined from

~uN ¼ ~G�1 � �uN ¼
XM
m¼0

ðI
 

� GÞv
!

� �uN:

The series expansion for the inverse operator on the right-hand side is truncated at M which regularizes the

inverse, where M is a (weakly) problem dependent regularization parameter [6,7]. An explicit SGS model

based on this linear approximate deconvolution operation was proposed by Stolz and Adams [6] and

applied to several canonical flow configurations, e.g. [25]. For most applications of these linear deconvo-

lution operations to flows at large Reynolds numbers an additional relaxation-type regularization of the

underlying conservation law was found to be necessary, e.g. [25,26]. In this paper we propose a regulari-
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zation based on adusting nonlinearly the local interpolation polynomials to the solution properties. By this

extension of the deconvolution operation ~uN ¼ ~G�1 � �uN to a solution-adaptive nonlinear formulation it is

expected that an additional regularization such as in [25,26] can be avoided. Another utensil which can be
exploited is the choice of an appropriate and consistent numerical flux function ~FN which approximates FN.
In summary, the construction of an implicit SGS model which we propose here amounts to develop an

adaptive approximate deconvolution operator ~G�1 and to devise a suitable numerical flux function ~FN.
Once deconvolution operation and numerical flux function are determined, the MDEA of Eq. (5) leads

to an evolution equation of �uN in the form of

o�uN
ot

þ G � oFNðuNÞ
ox

¼ GN; ð6Þ

where

GN ¼ G � oFNðuNÞ
ox

� G � o
~FNð~uNÞ
ox

ð7Þ

is the truncation error of the discretization. If GN approximates �GSGS in some sense for finite h we obtain an

implicit SGS model contained within the discretization. Note that this requirement is different from the

requirement of GN approximating �GSGS for h ! 0, which would dictate a spectrally convergent discreti-

zation as optimum.
2. Approximate deconvolution

Consistently with the finite-volume approach we will call xj the cell centers and xj�1=2 the cell faces of cell

j. Filtering (4) applied to the flux derivative oF ðuÞ=ox in Eq. (1) returns

G � oF ðuÞ
ox

¼ F ðujþ1=2Þ � F ðuj�1=2Þ
h

;

which requires an approximation of the unfiltered solution uðxÞ at the left and right faces of each cell j
which are called uþj�1=2 and u�jþ1=2, respectively.

The use of a top-hat filter G according to Eq. (4) allows for a primitive-function reconstruction of uðxÞ
from �uN at xj�1=2 as proposed by Harten et al. [27]. In this reference also a more general deconvolution

reconstruction was proposed which can be formulated for any graded filter for which sufficiently many filter

moments exist. Since the latter procedure results in an increased computational overhead and the advan-

tage of using filters other than the top-hat filter is unclear we restrict ourselves to the top-hat filter and

resort to the primitive-function reconstruction in the following. In [27] reconstruction was combined with
an interpolation-stencil selection, leading to the essentially non-oscillatory (ENO) property of the recon-

structed solution. This procedure is a way of getting a nonlinear approximate or regularized deconvolution

of the filtered solution.

We extend now the essentially non-oscillatory approach of adaptive deconvolution in such a way that by

adjusting discretization parameters implicit SGS models for LES are obtained. For this purpose we in-

troduce a set of interpolation polynomials of order k ¼ 1; . . . ;K; for each k with shift r ¼ 0; . . . ; k � 1 of the

left-most stencil point which also identifies the respective stencil. Admissible stencils, i.e. stencils which

include the interpolation points xj�1=2 in their support, range from from j� r to j� r þ k � 1, expressed by
(k; r). The stencil setup is illustrated in Fig. 1. Right-face interpolants at xjþ1=2 and left-face interpolants at

xj�1=2 of order k are given by Eq. (2.10) of [28]
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Fig. 1. Admissible stencils for polynomial order k ¼ 1, 2, 3, 4.
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p�k;rðxjþ1=2Þ ¼
Xk�1

l¼0

cðkÞr;l ðjÞ�uj�rþl; pþk;rðxj�1=2Þ ¼
Xk�1

l¼0

cðkÞr�1;lðjÞ�uj�rþl; ð8Þ

respectively. For each k these expressions represent the information contained in admissible polynomials,

where deconvolution and interpolation are expressed by the coefficients cðkÞr;l ðjÞ. A rule for computing these
coefficients is given by Eq. (2.20) of [28]

cðkÞr;l ðjÞ ¼ hj�rþl

Xk
l¼lþ1

Pk
p¼0

p 6¼l

Qk
m¼0
m 6¼l;p

xjþ1=2 � xj�rþm�1=2

Qk
m¼0
m 6¼l

xj�rþl�1=2 � xj�rþm�1=2

: ð9Þ

As indicated, this rule holds for variable mesh spacing. If hj ¼ h ¼ const: it can be simplified accordingly

[28]. The index range of cðkÞr;l ðjÞ is r ¼ 0; . . . ; k � 1 and l ¼ 0; . . . ; k � 1 for each k ¼ 1; . . . ;K:
For ENO or weighted-ENO (WENO) approaches [29] a single interpolation-polynomial order is chosen.

Here, we construct a quasi-linear combination of all possible interpolation polynomials according to Eq. (8)

up to a certain order K

~u�j�1=2 ¼
XK
k¼1

Xk�1

r¼0

x�
k;rðjÞp�k;rðxj�1=2Þ: ð10Þ

As restriction we impose that the sum of all weights x�
k;rðjÞ over k and r is unity

XK
k¼1

Xk�1

r¼0

x�
k;r ¼ 1:

Eq. (10) gives the resulting approximants for the deconvolved solution at the left and right cell faces.

Finally, an appropriate numerical flux function ~FN needs to be devised which approximates the physical

flux F . One choice is a modified Lax–Friedrichs flux function

~FNðxjþ1=2Þ ¼
1

2
F ð~u�jþ1=2Þ
�

þ F ð~uþjþ1=2Þ
�
� rjþ1=2 ~uþjþ1=2

�
� ~u�jþ1=2

�
;

where rjþ1=2 can be any shift-invariant functional of �uN. During computational experimentation we found

that the following numerical flux function for our purposes leads to favorable error cancellations:
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~FNðxjþ1=2Þ ¼ F
~u�jþ1=2 þ ~uþjþ1=2

2

 !
� rjþ1=2 ~uþjþ1=2

�
� ~u�jþ1=2

�
: ð11Þ

The implicit SGS model is expressed in the above framework by the choices for the smoothness measure

which enters the computation of x�
k;r and the dissipative weights rjþ1=2. For the weights x�

k;r we follow the

WENO approach [29] and set

x�
k;r ¼

1

K

a�k;rPk�1

l¼0 a
�
k;l

: ð12Þ

The coefficients a�k;r are computed from

a�k;r ¼ c�k;rðeþ bk;rÞ
�2
; ð13Þ

where e is a small number to prevent singularity. The smoothness measure bk;r is computed as the total

variation (TV) of ~uN on the considered stencil

bk;r ¼
Xk�r�2

l¼�r

j�ujþlþ1 � �ujþlj: ð14Þ

Alternatively, the WENO smoothness measure as proposed by Jiang and Shu [30] can be chosen, see e.g.

Eqs. (2.61)–(2.63) of [28].

The dissipative weight in Eq. (11) can be chosen, e.g., as rjþ1=2 ¼ j�ujþ1 � �ujj. Eq. (13) introduces free

parameters for the right-face interpolant c�k;r and the left-face interpolant cþk;k�1�r, which are constrained to

be symmetric with respect to the stencil center c�k;r ¼ cþk;k�1�r. Objective of implicit SGS modeling is to
determine these parameters which close the model.
3. Implicit subgrid-scale model derivation and analysis

The MDEA is performed here for the semi-discretization only. This is consistent with the spatially fil-

tered interpretation of the LES equations, the time step being sufficiently small for the spatial truncation

error to be dominant. Based on the results of Section 3.1.3 we argue that this is indeed the case for a time-
step size chosen according to the Courant–Friedrichs–Lewy limit

s ¼ h
CFL

max
x

oF =ov
: ð15Þ

For time integration we have tested two different explicit Runge–Kutta schemes, as detailed below. For

implicit time integrations or larger time-step sizes an extension of MDEA to full discretizations should be

considered. In this case, however, the LES is in effect space and time filtered [31]. For all computations the

diffusive terms are discretized by a fourth-order central finite difference.

The central assumption for performing the MDEA is that the discrete unfiltered solution uN in a
neighborhood of xj can be represented by local approximation polynomials of degree K up to K 6 L

�uðmÞj ¼:
XL�1

l¼m

�uðlÞj
M ðl�mÞðxjÞ
ðl� mÞ! ð16Þ
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for m ¼ 0; . . . ; L� 1. �uðmÞj and �uðmÞj stand for the order m derivatives of the approximation polynomials of �u and
u at xj. Note that by the Weierstrass approximation theorem it is not necessary for the approximated

function uðxÞ to be smooth. M ðlÞ is the lth moment of the filter kernel G

M ðlÞðxjÞ ¼
Z xjþ1=2

xj�1=2

ðx� xjÞlGðx� xjÞ:

The set of Eq. (16) can be solved for �uðmÞj so that �uN is obtained in terms of the first L� 1 derivatives of �uN
and can be inserted as approximation for uN into Eq. (7). As a result of MDEA a differential equation for

the continuous extension of �uN follows. The implicit SGS model can be identified by computing GN as

defined in Eq. (7).

In this paper we focus on the one-dimensional implicit SGS model development, the extension to three-

dimensional Navier–Stokes turbulence is subject of a subsequent report. As underlying conservation law we

consider the viscous Burgers equation for which F ðvÞ ¼ v2=2� mov=ox is to be substituted in Eq. (1). For

SGS modeling only the convective term of Eq. (3) is relevant, so that we will not consider the diffusion
terms within MDEA. The exact expression for the convective part of the Burgers equation is

G � oFNðuNÞ
ox

¼ �uN
o�uN
ox

þ 1

12

o�uN
ox

o2�uN
ox4

� 1

720

o�uN
ox

o4�uN
ox4

h4 þ 1

30240

o�uN
ox

o6�uN
ox6

h6 �þ � � � ð17Þ

where derivatives are to be taken at the cell centers xN. MDEA is performed here only for equidistant

meshes with hj ¼ h. An analysis of the effect of varying mesh size is subject of a separate study. Results of

MDEA are computed with MAPLE 1 and are given in the subsequent sections.

3.1. Implicit SGS-model adaptation for given explicit SGS model

On the example of the Smagorinsky model we demonstrate in this section how a given explicit SGS

model can be matched by adjusting K and c�k;rof the generic implicit SGS model. The Smagorinsky model

formulated for the Burgers equation is

sSmag ¼ �CSh2
o�u
ox

�����
����� o�uox :

The explicit SGS model which is inserted on the right-hand side of the filtered equations is

�GSGS ¼ � osSmag

ox
¼ 2CSh2

o�u
ox

�����
����� o

2�u
ox2

:

Since the purpose here is not to assess the quality of the Smagorinsky model itself, the particular value of

the Smagorinsky constant CS is unimportant. In the following computational experiments we will use

CS ¼ 0:2. With the implicit SGS approach, we can identify model parameters in such a way that the re-

sulting implicit formulation matches with the explicit model for K ¼ 3 up to order Oðh3Þ as given in Table 1.

Choosing rjþi=2 ¼ 9CSj~u�jþ1=2 � ~uþjþ1=2j in Eq. (11), the truncation error GN follows as

GN ¼ 2CS

o�u
ox

�����
����� o

2�u
ox2

h2 � 1

6
CS

o�u
ox

�����
����� o

4�u
ox4

h4 þ Oðh6Þ: ð18Þ
1 Maple 9, Waterloo Maple Inc., 2003.



Table 1

Result for the discretization parameters c�r;k to match the explicit Smagorinsky model

Parameter Value

cþ1;0 1

cþ2;0 2/3

cþ2;1 1/3

cþ3;0 3/10

cþ3;1 3/10

cþ3;2 4/10
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3.1.1. Results for forced Burgers turbulence

A relevant one-dimensional model for Navier–Stokes turbulence is a properly forced Burgers equation.

Here, we employ a stochastic force as suggested by Cheklov and Yakhot [32]

ov
ot

þ v
ov
ox

¼ m
o2v
ox2

þ f ðx; tÞ: ð19Þ

The solution v is 2p-periodic. As Reynolds number we choose 1=m ¼ 105. The random force f ðx; tÞ is defined
in wavenumber space as

f̂ ðnÞ ¼ A
ei/ffiffiffiffiffiffi
jnj

p ffiffiffi
s

p ; ð20Þ

where A ¼ 0:04 and p6/6 p is randomly chosen for every wavenumber and at every time step. For this

forcing a dissipation scale of order g � 10�3 follows. After an initial transient a stationary state is reached

which exhibits an hÊðnÞi � n�5=3 inertial range, where ÊðnÞ ¼ j�̂uðnÞj2=2 and �̂uðnÞ is the Fourier transform of
�uðxÞ at wavenumber n. The time-step size s is determined from Eq. (15) with CFL ¼ 0:5. Time integration is

performed with the TVD Runge–Kutta scheme of Shu [33].
Discretizations of Eq. (19) were integrated up to t ¼ 500. Averages were gathered after a short initial

transient. Fig. 2 compares the prediction of the implicit Smagorinsky model with results obtained with a

spectral and dealiased discretization where the Smagorinsky model is added explicitly. We note that the

prediction by the implicit Smagorinsky model agrees for the inertial-range well with that of the explicit

Smagorinsky model. Discrepancies at large wavenumbers are caused by terms of order Oðh4Þ by which the

implicit model differs from the explicit one.

3.1.2. Results for decaying Burgers turbulence

The solution v is L-periodic. For consistency with the results of Aldama [31] we set v ¼ 0:02, L ¼ 500.

The initial data are computed from a distribution with initial spectrum

ÊðnÞ ¼ An04e�r2n02=2;

where n0 ¼ 2pn=L, A ¼ 10722:08, a ¼ 19:89. The time-step size s is determined by Eq. (15) with CFL ¼ 0:5.
For reference we perform a direct simulation with a dealiased spectral discretization at a resolution of 8192

points, for which it was shown that the mesh-Reynolds number is on the order of unity [31], and a LES with

a dealiased spectral discretization and an explicit Smagorinsky model.

In Fig. 3 the decay of total energy

EðtÞ ¼ 1

2

Z þ1

�1
j�̂uðnÞj2 dn ð21Þ
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Fig. 2. Averaged energy spectra hÊðnÞi for the stochastically forced Burgers equation: —, implicit Smagorinsky model; - - - -, explicit

Smagorinsky model; � � �, line with n�5=3 rule; (a) with N ¼ 32, (b) with N ¼ 256.
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Fig. 3. Temporal evolution of total energy EðtÞ as predicted by the implicit Smagorinsky model compared with the direct simulation

—: n, implicit Smagorinsky model with N ¼ 256; }, implicit Smagorinsky model with N ¼ 512; �, explicit Smagorinsky model with

N ¼ 256; s, explicit Smagorinsky model with N ¼ 512.
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of the different LES computations is compared with the direct simulation, showing a reasonable agreement

between implicit and explicit Smagorinsky model.

For illustration we show in Fig. 4 snapshots of the solutions at time t ¼ 180. Instantaneous energy
spectra follow the theoretical n�2 drop-off and show again a good agreement between explicit and implicit

Smagorinsky model, an example at t ¼ 180 for N ¼ 256 is shown in Fig. 5.

3.1.3. Effect of time integration

To check for the effect of time integration we have repeated some of the above computations with the

third-order low-storage Runge–Kutta scheme of Williamson [34] and with different CFL numbers.

Fig. 6 shows for the forced Burgers case that changing the integration scheme has only very little effect

on the results. Reducing the time-step size to CFL ¼ 0:1 and to CFL ¼ 0:01 has no visible effect on the
results, Fig. 7.

A similar behavior was found for the case of decaying Burgers turbulence.
0 100 200 300 400 500

0

x

ū(x )

Fig. 4. Instantaneous solution compared with the direct simulation — at time t ¼ 180; - - - -, implicit Smagorinsky model with

N ¼ 256; – � –, explicit Smagorinsky model with N ¼ 512,— � �—, implicit Smagorinsky model with N ¼ 256; �- -�, explicit Smagorinsky

model with N ¼ 512.
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Fig. 5. Instantaneous spectra at t ¼ 180 and N ¼ 512: —, implicit Smagorinsky model; - - - -, explicit Smagorinsky model.
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CFL¼ 0.1; — �—, implicit Smagorinsky model with CFL ¼ 0.01; � � �, line with n�5=3 rule; N ¼ 256 grid points.
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Fig. 6. Averaged energy spectra hÊðnÞi: —, implicit Smagorinsky model with TVD Runge–Kutta; - - - -, implicit Smagorinsky model

with low storage Runge–Kutta; � � �, line � n�5=3 rule; N ¼ 256.
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3.2. Implicit SGS-model construction by evolutionary optimization

Other than adjusting themodel parameters c�k;r for a given explicit SGSmodel amore systematic procedure

can be applied to determine these parameters. Provided that the grid resolution is sufficient, turbulent subgrid

scales are believed to obey general properties such as a Kolmogorov scaling in the inertial wavenumber range

for three-dimensional Navier–Stokes turbulence. Provided certain statistical properties are known one can

try to find systematically the SGS model which gives the best statistical representation of the filtered scales.
Optimization target is a generic reference flow configuration which represents the essential properties of flow

configurations to which the SGS model will be applied. This is the basic idea of optimal LES proposed by

Langford andMoser [35]. Since our model is nonlinear the stochastic estimation procedure used by Langford

and Moser cannot be adapted straightforwardly to derive c�k;r. Instead we resort to a more direct approach

where an initial guess for c�k;r is improved by evolutionary optimization. An appropriate cost function is

computed from an ensemble average of independent realizations. Since for efficiency the number of samples is



Table 2

Parameters for the evolutionary optimization algorithm

Parameter Value

Number of genes per individual 3

Random initialization Range from 0.0 to 0.3333

Number of generations 500

Population size 40

Offspring per generation 10

Selection of parents Tournament, 10 members

Offspring generation Arithmetic cross-over

New generation selection Tournament

Mutation-variance update factor 0.95
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less than what is necessary to completely remove the effect of stochastic fluctuations the resulting cost

function is not smooth but exhibits residual fluctuations. Unlike standard gradient approximation-based

optimization methods evolutionary algorithms can handle such non-smooth cost functions [36].
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Fig. 8. Convergence histories for the stochastically forced Burgers equation monitored over 500 generations: (a) mutation variance; (b)

cost function; —, average cost function; - - - -, best costfunction in ensemble; — �—, worst cost function in ensemble.
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In order to simulate an evolutionary process for determining suitable parameters c�k;r they are considered

as genes of an individual among the current generation. To every individual a fitness value determined from

the cost function is assigned. In our investigation we use the following simple evolutionary algorithm, for
further details the reader is referred to [36–39]:

(1) Selection of parents. Pairs of two datasets for c�k;r are drawn by a random process either with probability

proportional to their fitness or by tournament selection.

(2) Recombination. Offspring of parents is generated by recombination of their genes. Recombination can

take place either by 2-point cross-over or by arithmetic cross-over.

(3) Mutation. Random change of offspring genes. The random data are either normally distributed with

zero mean. Their variance is adapted depending on how close the generation is to an optimum.

(4) New generation selection. The new generation of individuals is selected from the current generation plus
offspring either by fitness selection or by tournament selection.

These four steps are looped over until an optimality criterion is satisfied or until a maximum number of

generations is reached. In the following section we apply this procedure to derive an optimized parameter

set for the stochastically forced Burgers equation.

For determining optimal parameters we consider the case of the stochastically forced Burgers equation

as described in Section 3.1.1. Here, however, a large-scale forcing is employed which maintains a

hÊðnÞi � n�2 spectrum. We consider this reference case for optimization since we found that the cost-

function sensitivity on the parameter set is more pronounced than for the hÊðnÞi � n�5=3 case. Also, the
dependency on the choice of the initial random seed is less strong which facilitates ensemble averaging.

Finally, having derived optimal parameters for one case we can test their prediction quality for other cases.

We add the inverse Fourier-transform of

f̂ ðnÞ ¼ A ei/

jnj
ffiffi
s

p ; jnj6 nh=4;
0; otherwise

�
ð22Þ

to the right-hand side of Eq. (19). In (22) �p6/6 p is randomly chosen for every wavenumber and at time

t and A ¼ 0:04: The cost function used for optimization is

C ¼ jp � pthj þ
1

jn1 � n2j
Xn2
n¼n1

ðlnhÊðnÞi
 

� a� p ln nÞ2
!1=2

; ð23Þ

p and a are the parameters of the estimate hln ÊðnÞi � p ln nþ a which is fitted to hÊðnÞi by a least-squares

estimate over the wavenumber range n1 ¼ 0:1nh 6 n6 n2 ¼ 0:9nh. The second term on the right-hand side of

Eq. (23) measures the deviation from a logarithmic law, whereas the first term measures the deviation from

the theoretically predicted exponent pth. For the solution of the Burgers equation the periodic interval
�p6 x6 p is partitioned into N ¼ 128 intervals. Time integration is performed for 06 t6 140 and statis-
Table 3

Result obtained by evolutionary optimization for the parameters c�k;r, for the TV form and the WENO form of the smoothness measure

bk;r

Parameter TV measure WENO measure

cþ1;0 1 1

cþ2;0 0.000153 0

cþ2;1 0.999847 1

cþ3;0 0.000142 0

cþ3;1 0.001326 0

cþ3;2 0.998532 1
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tical samples for computing the cost function are collected for t > 7, after an initial time transient. For all

computations the time-step size is adjusted according to Eq. (15) with CFL ¼ 0:5. Parameters of the

evolutionary algorithm are summarized in Table 2.
A representative example for the convergence history of the evolutionary algorithm is shown in Fig. 8.

The mutation variance decreases exponentially over the number of generations whereas the cost function

decreases algebraically. For the cost function the variation over the statistical ensemble at each generation

is indicated by the dashed line for the best cost function and the dash-dotted line for the worst cost

function.

Optimal parameters c�k;r are determined for two different choices of the smoothness measure bk;r, the TV

form Eq. (14) and the WENO form of Jiang and Shu [30]. The resulting optimal parameters are given in

Table 3. Note that for the WENO choice of the smoothness measure the stencil is effectively fixed and
nonlinear effects of subgrid-scale smoothness on the candidate-stencil weights are suppressed.

Given the numerical flux function, Eq. (11), with rjþ1=2 ¼ j�ujþ1 � �ujj the implicit SGS model can be

determined with MDEA according to Section 3 as
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Fig. 9. Averaged energy spectra for forced Burgers turbulence with hÊðnÞi � n�5=3 spectrum: (a) N ¼ 32, (b) N ¼ 256. —, implicit

Smagorinsky model; - - - -, optimal parameters with TV smoothness measure; — �—, optimal parameters with WENO smoothness

measure, � � �, line with n�5=3 rule.
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for the case of the TV smoothness measure and
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Fig. 10. Averaged energy spectra for forced Burgers turbulence with hÊðnÞi � n�2 spectrum: (a) N ¼ 32, (b) N ¼ 256. —, implicit

Smagorinsky model; - - - -, optimal parameters with TV smoothness measure; — �—, optimal parameters with WENO smoothness

measure; � � �, line � n�2.
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for the case of the WENO smoothness measure.

3.2.1. Results for forced Burgers turbulence

In this section, we compare the optimal implicit SGS model results with results for the implicit Sma-

gorinsky model, as discussed in Section 3.1. Recall that the results obtained for the implicit Smagorinsky

model were in reasonable agreement with those obtained with an explicit Smagorinsky model in combi-
nation with a spectral discretization.
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Fig. 11. Temporal decay of total turbulent kinetic energy: (a) N ¼ 32, (b) N ¼ 256. —, fully resolved spectral simulation; n, implicit

Smagorinsky model; �, optimal parameters with TV smoothness measure; s optimal parameters with WENO smoothness measure.
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Fig. 12. Instantaneous solution for the fully resolved simulation and for the LES of decaying Burgers turbulence at time t ¼ 180: (a)

LES with N ¼ 32, (b) LES with N ¼ 256. —, fully resolved spectral simulation; — � �—, implicit Smagorinsky model; - - - -, optimal

parameters with TV smoothness measure; — �—, optimal parameters with WENO smoothness measure.
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In Fig. 9 averaged energy spectra are shown for the case of the stochastically forced Burgers equation
with hÊðnÞi � n�5=3 spectrum, Eq. (20). Since the leading-order terms of the truncation error in Eqs. (24)

and (25) are nearly the same the computed average spectra hardly differ for the two choices of the

smoothness function. For both formulations the agreement with the theoretical spectrum is significantly

better than for the implicit Smagorinsky model. Similar observations hold for the stochastically forced

Burgers equation with hÊðnÞi � n�2 spectrum, Eq. (22), see Fig. 10. Except for wavenumbers near nh the

prediction of both formulations result in very similar predictions. Near the Nyquist wavenumber the

higher-order contributions of the truncation error in Eqs. (24) and (25) become more significant and cause

some differences. It should be emphasized that although the optimal model parameters have been derived
for the n�2-forcing a good prediction capability is also achieved for the n�5=3-forcing case.

3.2.2. Results for decaying Burgers turbulence

In this section, we apply the implicit SGS models derived above to the case of decaying Burgers tur-

bulence, according to Section 3.1.2. In Fig. 11 the decay of total kinetic energy over time is compared

between the optimal implicit SGS models with TV smoothness measure and with WENO smoothness
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measure and the implicit Smagorinsky model of Section 3.1. Also for this test case the results confirm that

the optimal models result in a significantly improved prediction compared with the implicit Smagorinsky

model. For illustration a snap shot of the instantaneous solutions for the fully resolved simulation and the
different large-eddy simulations at two different resolutions is shown in Fig. 12.
4. Conclusions

Our main objective is to demonstrate that implicit SGS models can be designed systematically and are

not merely inferred by an ad hoc choice of a numerical discretization. By properly interpreting the cell-

averaging and reconstruction steps of a finite-volume discretization as filtering and de-convolution, in a
similar fashion as proposed recently for explicit SGS models, the instruments for designing implicit SGS

models are at hand. Explicit deconvolution-type SGS models so far are limited to linear regularized de-

convolution operations for the approximate reconstruction of the unfiltered field. Employing methods

which are well established for ENO and WENO finite-volume discretizations we can extend the concept of

approximate de-convolution to the solution-adaptive nonlinear case.

Regularization of deconvolution is achieved by limiting the degree of local interpolation polynomials.

Solution adaptivity of the deconvolution is obtained by permitting all possible interpolation polynomials

up to the maximum degree on admissible candidate stencils to contribute. The respective contributions are
weighted by a straightforward adaptation of WENO smoothness measures. The approximately decon-

volved field is inserted into a modified Lax–Friedrichs numerical flux function. These steps constitute the

numerical discretization which delivers an implicit SGS model.

Similarly as the smoothness measure of WENO schemes drives the discretization to maximum order of

accuracy in smooth flow regions, here the discretization is driven in flow regions of developed turbulence

towards an optimized or otherwise designed truncation error. It is argued that the truncation error has the

same functionality as an explicit subgrid-scale model. Up to desired order a given explicit SGS model can be

matched. This is shown on the example of the Smagorinsky model. In this case the only benefit of the
implicit SGS model is that no explicit computation of model terms is necessary. Implicit model parameters

can, however, also be subjected to systematic optimal selection. Optimization target is a generic reference

flow configuration which represents the essential properties of flow configurations to which the implicit

model will be applied. Several approaches are possible, one example is the stochastic estimation. For its

simplicity and robustness we have resorted, however, to evolutionary optimization. We have demonstrated

that a set of optimal parameters for the case of the large-scale forced Burgers equation delivers also good

results for other cases. In particular this holds for the case of a stochastically forced Burgers equation where

the forcing spans the entire wavenumber range. With this forcing a resemblance of Navier–Stokes small-
scale dynamics is obtained which is different from the large-scale forced or decaying Burgers solution, where

the small scales are shocks. From this finding we can conclude that the observed good performance of the

optimized implicit model is not merely a result of the good shock-capturing properties of the underlying

WENO-like stencil weighting. It is rather a genuine SGS modeling capability of the approach which can be

expected to transfer to three-dimensional Navier–Stokes turbulence. As a note in passing we remark that

appropriate modifications of the smoothness measure can also be devised in order to achieve more complex

responses to the local flow character. This property might be exploited for including wall modeling or

transition modeling into implicit LES for the full three-dimensional Navier–Stokes equations.
The extension of the proposed implicit SGS procedure to the incompressible and compressible Navier–

Stokes equations in three dimensions is subject of ongoing research and results will be reported in a

subsequent paper. It is expected that also in these cases discretization parameters for the above implicit

SGS model can be found which determine the behavior of the truncation error in flow regions of developed

turbulence.
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